FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   >>  
the solar radiation reaching the upper stratosphere. The mechanism for the production of ozone is the absorption by oxygen molecules (O2) of relatively short-wavelength ultraviolet light. The oxygen molecule separates into two atoms of free oxygen, which immediately unite with other oxygen molecules on the surfaces of particles in the upper atmosphere. It is this union which forms ozone, or O3. The heat released by the ozone-forming process is the reason for the curious increase with altitude of the temperature of the stratosphere (the base of which is about 36,000 feet above the earth's surface). While the natural chemical reaction produces about 4,500 tons of ozone per second in the stratosphere, this is offset by other natural chemical reactions which break down the ozone. By far the most significant involves nitric oxide (NO) which breaks ozone (O3) into molecules. This effect was discovered only in the last few years in studies of the environmental problems which might be encountered if large fleets of supersonic transport aircraft operate routinely in the lower stratosphere. According to a report by Dr. Harold S. Johnston, University of California at Berkeley--prepared for the Department of Transportation's Climatic Impact Assessment Program--it now appears that the NO reaction is normally responsible for 50 to 70 percent of the destruction of ozone. In the natural environment, there is a variety of means for the production of NO and its transport into the stratosphere. Soil bacteria produce nitrous oxide (N2O) which enters the lower atmosphere and slowly diffuses into the stratosphere, where it reacts with free oxygen (O) to form two NO molecules. Another mechanism for NO production in the lower atmosphere may be lightning discharges, and while NO is quickly washed out of the lower atmosphere by rain, some of it may reach the stratosphere. Additional amounts of NO are produced directly in the stratosphere by cosmic rays from the sun and interstellar sources. It is because of this catalytic role which nitric oxide plays in the destruction of ozone that it is important to consider the effects of high-yield nuclear explosions on the ozone layer. The nuclear fireball and the air entrained within it are subjected to great heat, followed by relatively rapid cooling. These conditions are ideal for the production of tremendous amounts of NO from the air. It has been estimated that as much as 5,000
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   >>  



Top keywords:

stratosphere

 

oxygen

 

molecules

 

production

 

atmosphere

 

natural

 

nuclear

 

transport

 

destruction

 

nitric


reaction
 

amounts

 

chemical

 
mechanism
 

produce

 

bacteria

 

nitrous

 

Another

 
tremendous
 

reacts


enters

 

slowly

 
diffuses
 

variety

 

responsible

 
appears
 

Assessment

 

Program

 

lightning

 

estimated


environment
 

percent

 
conditions
 
catalytic
 

sources

 

interstellar

 

Impact

 

important

 

entrained

 

explosions


subjected
 

effects

 

washed

 

quickly

 
fireball
 

cosmic

 

directly

 

produced

 

Additional

 
cooling