FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
s concerned in the economical and efficient working of gas engines, in order to understand the more recent developments. It has been seen that gunpowder was the explosive used to produce a vacuum in Huyghens' engine, and that it was abandoned in favor of gas by Buren in 1823. The reason of departure is very obvious: a gunpowder explosion and a gaseous explosion differ in very important practical points. Gunpowder being a solid substance is capable of being packed into a very small space; the gas evolved by its decomposition is so great in volume that, even in the absence of any evolution of heat, a very high pressure would result. One cubic inch of gunpowder confined in a space of one cubic inch would cause a pressure by the gas it contains alone of 15,000 lb. per square inch; if the heating effect be allowed for, pressures of four times that amount, or 60,000 lb. per square inch, are easily accounted for. These pressures are far too high for use in any engine, and the bare possibility of getting such pressure by accident put gunpowder quite outside the purpose of the engineer, quite apart from any question of comparative cost. In a proper mixture of inflammable gas and air is found an exceedingly safe explosive, perfectly manageable and quite incapable of producing pressures in any sense dangerous to a properly constructed engine. The pressure produced by the explosion of any mixture of gas and air is strictly determined and limited, whereas the pressure produced by the explosion of gunpowder depends greatly upon the relation between the volume of the gunpowder and the space in which it is confined. Engines of the "Lenoir" type are the simplest in idea and construction; in them a mixture of gas and air is made in the cylinder during the first half of the piston stroke, air being taken from the atmosphere and drawn into the cylinder by the forward movement of the piston. At the same time gas entering by a number of holes, and streaming into the air to form an explosive mixture, the movement of a valve cuts off the supply, and brings the igniting arrangement into action. The pressure produced by the explosion acting upon the piston makes it complete its stroke, when the exhaust valve opens exactly as in the steam engine. The Lenoir and Hugon engines, the earlier forms of this type, were double acting, receiving two impulses for every revolution of the crank, the impulse differing from that in a high pressure steam
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

pressure

 

gunpowder

 

explosion

 

engine

 

mixture

 

produced

 

piston

 

explosive

 

pressures

 

Lenoir


movement
 

stroke

 

confined

 
volume
 

square

 

acting

 

engines

 

cylinder

 
producing
 

dangerous


incapable

 

exceedingly

 
perfectly
 

manageable

 

constructed

 
depends
 

greatly

 

Engines

 

relation

 

limited


determined
 

construction

 
strictly
 
simplest
 

properly

 

earlier

 

complete

 

exhaust

 

revolution

 

impulse


differing
 

impulses

 

double

 

receiving

 
action
 

forward

 

inflammable

 

atmosphere

 

entering

 
number