FREE BOOKS

Author's List




PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  
two cylinders are placed on the far side of the vessel, but out of the direct line of fire of the rays. When the rays go straight through the slit there is only a very small negative charge communicated to the inner cylinder, but when they are deflected by a magnet so that the phosphorescent patch falls on the slit in the outer cylinder the inner cylinder receives a very large negative charge, the increase coinciding very sharply with the appearance of the phosphorescent patch on the slit. When the patch is so much deflected by the magnet that it falls below the slit, the negative charge in the cylinder again disappears. This experiment shows that the cathode rays are accompanied by a stream of negative electrification. The same apparatus can be used to show that the passage of cathode rays through a gas makes it a conductor of electricity. For if the induction coil is kept running and a stream of the rays kept steadily going into the inner cylinder, the potential of the inner cylinder reaches a definite negative value below which it does not fall, however long the rays may be kept going. The cylinder reaches a steady state in which the gain of negative electricity from the cathode rays is equal to the loss by leakage through the conducting gas, the conductivity being produced by the passage of the rays through it. If the inner cylinder is charged up initially with a greater negative charge than corresponds to the steady state, on turning the rays on to the cylinder the negative charge will decrease and not increase until it reaches the steady state. The conductivity produced by the passage of cathode rays through a gas diminishes rapidly with the pressure. When rays pass through a gas at a low pressure, they are deflected by an electric field; when the pressure of the gas is higher the conductivity it acquires when the cathode rays pass through it is so large that the potential gradient cannot reach a sufficiently high value to produce an appreciable deflection. Thus the cathode rays carry a charge of negative electricity; the experiment described on page 875 (fig. 13) shows that they are deflected by an electric field as if they were negatively electrified, and are acted on by a magnetic force in just the way this force would act on a negatively electrified body moving along the path of the rays. There is therefore every reason for believing that they are char
PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  



Top keywords:

cylinder

 
negative
 

cathode

 

charge

 

deflected

 

reaches

 
pressure
 

steady

 

electricity

 

conductivity


passage
 
electrified
 

stream

 

negatively

 

electric

 

potential

 

experiment

 
phosphorescent
 
magnet
 

increase


produced
 
turning
 

corresponds

 

produce

 

sufficiently

 

gradient

 
cylinders
 
diminishes
 

higher

 

decrease


acquires

 

rapidly

 
moving
 

believing

 

reason

 

greater

 

deflection

 
magnetic
 

appreciable

 

electrification


accompanied
 
apparatus
 

direct

 
disappears
 
communicated
 

receives

 

coinciding

 
appearance
 

straight

 
sharply