FREE BOOKS

Author's List




PREV.   NEXT  
|<   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148  
>>  
as nuclei, seriously diminish their velocity. If a point is charged up to a high and rapidly alternating potential, such as can be produced by the electric oscillations started when a Leyden jar is discharged, then in hydrogen, nitrogen, ammonia and carbonic acid gas a conductor placed in the neighbourhood of the point gets a negative charge, while in air and oxygen it gets a positive one. There are two considerations which are of importance in connexion with this effect. The first is the velocity of the ions in the electric field, and the second the ease with which the ions can give up their charges to the metal point. The greater velocity of the negative ions would, if the potential were rapidly alternating, cause an excess of negative ions to be left in the surrounding gas. This is the case in hydrogen. If, however, the metal had a much greater tendency to unite with negative than with positive ions, such as we should expect to be the case in oxygen, this would act in the opposite direction, and tend to leave an excess of positive ions in the gas. _The Characteristic Curve for Discharge through Gases._--When a current of electricity passes through a metallic conductor the relation between the current and the potential difference is the exceedingly simple one expressed by Ohm's law; the current is proportional to the potential difference. When the current passes through a gas there is no such simple relation. Thus we have already mentioned cases where the current increased as the potential increased although not in the same proportion, while as we have seen in certain stages of the arc discharge the potential difference diminishes as the current increases. Thus the problem of finding the current which a given battery will produce when part of the circuit consists of a gas discharge is much more complicated than when the circuit consists entirely of metallic conductors. If, however, we measure the potential difference between the electrodes in the gas when different currents are sent through it, we can plot a curve, called the "characteristic curve," whose ordinates are the potential differences between the electrodes in the gas and the abscissae the corresponding currents. By the aid of this curve we can calculate the current produced when a given battery is connected up to the gas by leads of known resistance. For let E0 be the electromotive force of the battery, R the resistance of the leads, i the current,
PREV.   NEXT  
|<   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148  
>>  



Top keywords:

current

 
potential
 

difference

 

negative

 

velocity

 

positive

 
battery
 

excess

 

resistance

 

greater


metallic
 
increased
 

discharge

 

circuit

 

electrodes

 

simple

 

currents

 
passes
 
consists
 

relation


oxygen
 
conductor
 

alternating

 

electric

 

produced

 

hydrogen

 
rapidly
 
finding
 

complicated

 

produce


problem

 

diminishes

 
oscillations
 

proportion

 

stages

 

increases

 

nuclei

 
connected
 

calculate

 

electromotive


mentioned
 
charged
 

measure

 
diminish
 
called
 

differences

 

abscissae

 
ordinates
 

characteristic

 
conductors