FREE BOOKS

Author's List




PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   >>  
different tones could be produced. A stag-horn that was blown like a flageolet, and having three finger-holes, has also been found; while on the old monuments of Egypt are pictured harps, pipes with seven finger-holes, a kind of flute, drums, tambourines, cymbals, and trumpets. In later times these primeval forms have been modified into the various instruments in use in the modern orchestra. It seems as if no musician had ever been interested in the question as to why one instrument should give out a sound so different from another one, even though it was sounding upon the same pitch. No one can ever mistake the sound of a violin, or a horn, or a piano, for any other instrument; and no two persons have voices alike. This difference in tone, which enables us to identify an instrument by its sound or a friend by his voice, is called quality of tone, or _timbre_. About twenty years ago, that great German physicist Helmholtz undertook the investigation of this subject, and succeeded in unravelling the whole mystery of the qualities of sound. He discovered first, that a musical sound is very rarely a simple tone, but is made up of several tones, sometimes as many as ten or fifteen, having different degrees of intensity and pitch. The lowest sound, which is also the strongest, is called the _fundamental_; and it is this tone we mean when we speak of the pitch of a sound, as the pitch of middle C upon a piano, or the pitch of the _A_ string on a violin. The higher sounds that accompany the fundamental are called sometimes harmonics, sometimes upper partial tones, but generally _overtones_. The character or quality of a sound depends altogether upon the number and intensity of these overtones associated with the fundamental. If a sound can be made upon a pipe and a violin, that consists wholly of the fundamental with no overtones, the two instruments sound absolutely alike. It is exceedingly difficult to do this; and such sound when produced is smooth, but without character, and unpleasing. Second, Helmholtz discovered that the overtones always stand in the simplest mathematical relation to the fundamental tone,--in fact, are simple multiples of that tone, being two, three, four, and so on, times the number of vibrations of it. This will be readily understood by considering the position of such related sounds when they are written upon the staff. [Illustration] If we start with C in the bass as indicated in the st
PREV.   NEXT  
|<   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59  
60   >>  



Top keywords:

fundamental

 

overtones

 

instrument

 
violin
 
called
 

Helmholtz

 

number

 

simple

 

discovered

 
character

sounds

 

intensity

 

quality

 
finger
 

produced

 

instruments

 

strongest

 

lowest

 
position
 

related


written

 
degrees
 

rarely

 
Illustration
 

fifteen

 

musical

 

string

 

Second

 

unpleasing

 

altogether


depends

 

absolutely

 

exceedingly

 

difficult

 

smooth

 

wholly

 

qualities

 

consists

 

simplest

 

generally


vibrations

 
higher
 

understood

 

readily

 
multiples
 

mathematical

 

partial

 

relation

 

harmonics

 
accompany