FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
s north pole towards it, in all cases having a polarity opposite to that of the pole acting upon it. The strength of this induced magnetism thus developed depends upon the distance apart of the magnet and the iron, being at its maximum when the two touch. But the tack itself is also made a magnet, and will attract another tack, and that one still another, the number which can be thus supported being dependent upon the strength of the first or inducing magnet. Suppose now that we should wind a few feet of wire about the nail, and fasten the two ends of the wire to an ordinary galvanometer, and then make the nail to approach the permanent magnet. The galvanometer needle would be seen to move as the nail approached; and, if the latter were allowed to touch the magnet, the movement of the needle would suddenly be much hastened, but would directly come to rest, showing that, so long as there is no motion of the nail towards or away from the magnet, no electricity is moving in the wire, although the nail is a strong magnet while it is in contact with the permanent magnet. If the nail be now withdrawn, the two phenomena happen as before: that is to say, as the nail recedes it loses its magnetism; and the giving-up of its magnetism induces a current of electricity through the wire in the opposite direction to that it had when the nail approached. The current of electricity in the opposite direction is indicated by the galvanometer needle, which moves according to Ampere's law mentioned on a preceding page. It may be noted here that we have an effect quite analogous to that already mentioned on page 21 as the experiment of Faraday. In one case a permanent magnet is thrust into a coil of wire, and in the other a piece of iron is made a magnet while enclosed in a coil. In each case there is generated a current of electricity _which lasts no longer than the mechanical motion of the parts lasts_. MAGNETO-ELECTRIC MACHINES. Such transient currents are practically useless, and several devices have been invented to make the flow continuous. The common form of machine for doing this may be understood by reference to the diagram. [Illustration: FIG. 4.] N S, Fig. 4, is the permanent magnet, which is bent into a U form in order to utilize both poles. N' and S' are short rods of soft iron fastened into a yoke-piece Y, also of soft iron. Coils of wire surround each of the rods as represented, the ends of the wires connecting w
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

magnet

 

permanent

 
electricity
 

opposite

 

galvanometer

 

needle

 

magnetism

 
current
 
mentioned
 
approached

direction

 

motion

 

strength

 
represented
 

fastened

 

enclosed

 

preceding

 

connecting

 

generated

 

thrust


analogous
 

effect

 
experiment
 

Faraday

 
surround
 

utilize

 

common

 

continuous

 
machine
 
diagram

Illustration

 

reference

 
understood
 

invented

 

ELECTRIC

 

MACHINES

 

MAGNETO

 

mechanical

 

transient

 

currents


devices

 
practically
 

useless

 

longer

 

happen

 
Suppose
 

inducing

 

supported

 
dependent
 

approach