FREE BOOKS

Author's List




PREV.   NEXT  
|<   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301  
302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   >>   >|  
ix million gallons a day, and, in 1851, at nearly double that amount, the increase being accompanied by an average fall of no less than two feet a year in the level to which the water rose. The water stood commonly, in 1822, at high-water mark, and had sunk in 1851 to 45, and in some wells to 65 feet below high-water mark.[307] This fact shows the limited capacity of the subterranean reservoir. In the last of three wells bored through the chalk at Tours, to the depth of several hundred feet, the water rose 32 feet above the level of the soil, and the discharge amounted to 300 cubic yards of water every twenty-four hours.[308] By way of experiment, the sinking of a well was commenced at Paris in 1834, which had reached, in November, 1839, a depth of more than 1600 English feet, and yet no water ascended to the surface. The government were persuaded by M. Arago to persevere, if necessary, to the depth of more than 2000 feet; but when they had descended above 1800 English feet below the surface, the water rose through the tube (which was about ten inches in diameter), so as to discharge half a million of gallons of limpid water every twenty-four hours. The temperature of the water increased at the rate of 1.8 degrees F. for every 101 English feet, as they went down, the result agreeing very closely with the anticipations of the scientific advisers of this most spirited undertaking. Mr. Briggs, the British consul in Egypt, obtained water between Cairo and Suez, in a calcareous sand, at the depth of thirty feet; but it did not rise in the well.[309] But other borings in the same desert, of variable depth, between 50 and 300 feet, and which passed through alternations of sand, clay, and siliceous rock, yielded water at the surface.[310] The rise and overflow of the water in Artesian wells is generally referred, and apparently with reason, to the same principle as the play of an artificial fountain. Let the porous stratum or set of strata, _a_ _a_, rest on the impermeable rock _d_, and be covered by another mass of an impermeable nature. The whole mass _a_ _a_ may easily, in such a position, become saturated with water, which may descend from its higher and exposed parts--a hilly region to which clouds are attracted, and where rain falls in abundance. Suppose that at some point, as at _b_, an opening be made, which gives a free passage upwards to the waters confined in _a_ _a_, at so low a level that they are subjected to
PREV.   NEXT  
|<   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301  
302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   >>   >|  



Top keywords:

surface

 

English

 

twenty

 
discharge
 

impermeable

 

gallons

 

million

 

Artesian

 

variable

 

generally


referred
 

desert

 

passage

 
passed
 

overflow

 

yielded

 

upwards

 

siliceous

 

alternations

 

obtained


subjected
 

consul

 

undertaking

 

Briggs

 

British

 
calcareous
 
waters
 

apparently

 

confined

 

thirty


borings
 

artificial

 

easily

 

position

 

nature

 

saturated

 
region
 

clouds

 

exposed

 
higher

descend

 
covered
 

abundance

 
fountain
 

porous

 

stratum

 

opening

 

attracted

 

principle

 

spirited